Active force inhibition and stretch-induced force enhancement in frog muscle treated with BDM.

نویسندگان

  • Dilson E Rassier
  • Walter Herzog
چکیده

There is evidence that the stretch-induced residual force enhancement observed in skeletal muscles is associated with 1) cross-bridge dynamics and 2) an increase in passive force. The purpose of this study was to characterize the total and passive force enhancement and to evaluate whether these phenomena may be associated with a slow detachment of cross bridges. Single fibers from frog lumbrical muscles were placed at a length 20% longer than the plateau of the force-length relationship, and active and passive stretches (amplitudes of 5 and 10% of fiber length and at a speed of 40% fiber length/s) were performed. Experiments were conducted in Ringer solution and with the addition of 2, 5, and 10 mM of 2,3-butanedione monoxime (BDM), a cross-bridge inhibitor. The steady-state active and passive isometric forces after stretch of an activated fiber were higher than the corresponding forces measured after isometric contractions or passive stretches. BDM decreased the absolute isometric force and increased the total force enhancement in all conditions investigated. These results suggest that total force enhancement is directly associated with cross-bridge kinetics. Addition of 2 mM BDM did not change the passive force enhancement after 5 and 10% stretches. Addition of 5 and 10 mM did not change (5% stretches) or increased (10% stretches) the passive force enhancement. Increasing stretch amplitudes and increasing concentrations of BDM caused relaxation after stretch to be slower, and because passive force enhancement is increased at the greatest stretch amplitudes and the highest BDM concentrations, it appears that passive force enhancement may be related to slow-detaching cross bridges.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relationship between force and stiffness in muscle fibers after stretch.

The purpose of this study was to evaluate the relationship between force and stiffness after stretch of activated fibers, while simultaneously changing contractility by interfering with the cross-bridge kinetics and muscle activation. Single fibers dissected from lumbrical muscles of frogs were placed at a length 20% longer than the plateau of the force-length relationship, activated, and stret...

متن کامل

Shortening-induced force depression is primarily caused by cross-bridges in strongly bound states.

The steady-state isometric force following active muscle shortening is smaller than the corresponding force obtained for purely isometric contractions. This so-called residual force depression has been observed consistently for more than half a century, however its mechanism remains a matter of scientific debate. [Maréchal, G., Plaghki, L., 1979. The deficit of the isometric tetanic tension red...

متن کامل

Enhancement of twitch force by stretch in a nerve-skeletal muscle preparation of the frog Rana porosa brevipoda and the effects of temperature on it.

We investigated the mechanism of the enhancement of twitch force by stretch and the effects of temperature on it in nerve-skeletal muscle preparations of whole iliofibularis muscles isolated from the frog Rana brevipoda. When a preparation was stimulated indirectly and stretched, the twitch force after the stretch was enhanced remarkably in comparison to that observed before a stretch at low te...

متن کامل

Is a parallel elastic element responsible for the enhancement of steady-state muscle force following active stretch?

For over 50 years, it has been recognised that muscles from many different species of animals are able to generate a higher steady-state isometric force after active stretch than during a purely isometric contraction at the same length. This is known as ;residual force enhancement' (rFE). The mechanism underlying this phenomenon remains controversial. One proposal is that an elastic element par...

متن کامل

Effect of temperature on residual force enhancement in single skeletal muscle fibers.

It is well accepted that the steady-state isometric force following active stretching of a muscle is greater than the steady-state isometric force obtained in a purely isometric contraction at the same length. This property of skeletal muscle has been called residual force enhancement (FE). Despite decades of research the mechanisms responsible for FE have remained largely unknown. Based on pre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 97 4  شماره 

صفحات  -

تاریخ انتشار 2004